A Phase 2 Dose-Escalation Study of Lonafarnib Plus Ritonavir in Patients with Chronic Hepatitis D: Final Results from the Lonafarnib With Ritonavir in HDV - 4 (LOWR HDV - 4) Study

Heiner Wedemeyer¹, Kerstin Port¹, Katja Deterding¹, Anika Wranke¹, Janina Kirschner¹, Eduardo B Martins², Jeffrey S Glenn³, Markus Cornberg¹, Michael P Manns¹

¹Hannover Medical School
²Eiger BioPharmaceuticals, Inc.
³Stanford University School of Medicine
Disclosures

Heiner Wedemeyer
Honoraria for consulting or speaking (last 5 years):
Abbott, AbbVie, Biolex, BMS, Boehringer Ingelheim, Eiger, Gilead, ITS, JJ/Janssen-Cilag, Medgenics, Merck/Schering-Plough, MyrGmbH, Novartis, Roche, Roche Diagnostics, Siemens, Transgene, ViiV
Research grants:
Abbott, Abbvie, BMS, Gilead, Merck, Novartis, Roche, Roche Diagnostics, Siemens

Kerstin Port: No conflicts of interest to declare
Katja Deterding: Honoraria for speaking Gilead, Abbvie, MSD
Anika Wranke: Supported by a fellow education program of BMS
Janina Kirschner: No conflicts of interest to declare
Eduardo B Martins: Employee; Shareholder; Eiger BioPharmaceuticals
Jeffrey S Glenn: Founder; Board of Directors; Shareholder; Eiger BioPharmaceuticals
Markus Cornberg: Honoraria or grant support by AbbVie, BMS, Gilead, Merck/MSD, Novartis, Roche, Roche Diagnostics
Michael P Manns: Honoraria or grant support by AbbVie, BMS, Gilead, Merck/MSD, Novartis, Roche, Roche Diagnostics
Hepatitis D (Delta) - Virus

- Defective virus that needs HBsAg for its propagation
- 10-20 million individuals are anti-HDV positive
- Causes the most severe form of chronic viral hepatitis

More rapid progression to liver cirrhosis and liver cancer; 5-7x more likely to develop cirrhosis and HCC vs HBV

48 wks of PEG IFN-α leads to 25-30% undetectable HDV-RNA

Wedemeyer, Yurdaydin et al., NEJM 2011; 364: 322-31

Late relapses occur in 56% of patients with initial response

Heidrich et al., Hepatology 2014; 60:87-97

HDV-RNA suppression is associated with improved long-term clinical outcome

Wranke et al., Hepatology 2016 epub, Oct 22

Final step in HDV replication involves prenylation (i.e. farnesylation):
• Farnesyl transferase is a host enzyme which can be targeted by drugs
• Lonafarnib for 28 days induced a dose-dependent HDV-RNA decline

Koh et al., Lancet Infect. Dis. 2015; 15: 1167-74
Lonafarnib for HDV

- Small molecule, oral, prenylation inhibitor

- Well-characterized through Phase 3
 - >2,000 patients dosed in oncology program by Merck (Schering-Plough)
 (RAS and HDV large antigen share the same farnesyl modification)
 - Dose limiting GI toxicity (class effect)

- Over 120 HDV patients dosed across international sites
LOWR HDV Program
Identifying Dose and Regimen for Registration Study

LOWR HDV – 2
“Dose-Finding” Study
N = 58

LOWR HDV – 3
“QD” Study
N = 21

LOWR HDV – 4
“Dose-Escalation” Study
N = 15

LOWR HDV – 2*
• LNF-RTV +/- PEG IFN
 • Yurdaydin et al. EASL 2017 Abstract #GS-008

LOWR HDV – 3**
• Koh et al., EASL 2017 Abstract #LBP-519
Primary Objectives
- Dose-escalation / maintenance up to LNF 100 mg BID + RTV for 24 weeks
- Safety and tolerability of LNF + RTV dose-escalation for 24 weeks
- HDV-RNA decline over 24 weeks

Secondary Objectives
- Pharmacokinetics
- ALT normalization
- Change in HBV-DNA levels
- Post-treatment HDV-RNA levels

HDV-RNA quantified by Robogene 2.0: LLOD = 14 IU/mL
LOWR HDV – 4: Dose-Escalation Study

Study Completed: 24 Weeks Rx + 24 Weeks Follow-Up

LOWR-4: Lonafarnib for Hepatitis Delta

Wedemeyer et al. 04--2017
Baseline Characteristics

LOWR HDV - 4

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>15</td>
</tr>
<tr>
<td>Median age, years (range)</td>
<td>40 (25 - 66)</td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>11 (73.3%)</td>
</tr>
<tr>
<td>Race, n (%)</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>12 (80%)</td>
</tr>
<tr>
<td>Asian</td>
<td>2 (13.3%)</td>
</tr>
<tr>
<td>Black</td>
<td>1 (6.7%)</td>
</tr>
<tr>
<td>BMI, kg/m² (range)</td>
<td>26.1 (20.8 - 34.3)</td>
</tr>
<tr>
<td>HDV-RNA, log₁₀ IU/mL (range)</td>
<td>4.58 (2.76 - 6.28)</td>
</tr>
<tr>
<td>ALT, U/mL (range)</td>
<td>118 (54 - 362)</td>
</tr>
<tr>
<td>Fibroscan, kPa (range)</td>
<td>14.4 (3.6 - 35.3)</td>
</tr>
<tr>
<td>Prior interferon treatment, n (%)</td>
<td>10 (73%)</td>
</tr>
<tr>
<td>NUC treatment from baseline, n (%)</td>
<td>12 (80%)</td>
</tr>
</tbody>
</table>
LOWR HDV – 4: Dose-Escalation Study
Lonafarnib Doses

- N = 15
 - 50 mg BID
 - N = 1
 - 75 mg BID
 - N = 13
 - Dose reduced
 - N = 10
 - 100 mg BID
 - N = 0
 - 75 mg BID
 - N = 3
 - Dose reduced
 - N = 5
 - Dose reduced
 - N = 5
 - 100 mg BID

Ritonavir adjustments not shown
LOWR HDV – 4: Dose-Escalation Study

Patient Disposition

≥ 4 Weeks
≥ 2 Weeks
18 Weeks

N = 15
50 mg BID

N = 1
50 mg BID

Dose reduced

N = 13
75 mg BID

N = 0
75 mg BID

Dose reduced

N = 10
100 mg BID

N = 5
100 mg BID

Dose reduced

N = 5
75 mg BID

Dose reduced

N = 1
100 mg QD discontinued

N = 1
50 mg QD discontinued

Ritonavir adjustments not shown
5 Patients Maintained on LNF 100 mg BID
Through Week 24

≥ 4 Weeks ≥ 2 Weeks 18 Weeks

N = 15
50 mg BID

N = 13
75 mg BID

N = 1
50 mg BID

N = 1
Dose reduced

N = 10
100 mg BID

N = 0
75 mg BID

N = 3
Dose reduced

N = 5
100 mg BID

N = 5
Dose reduced

5/15 patients: full dose

Ritonavir adjustments not shown
Safety

GI Adverse Events and Weight Through Week 48

<table>
<thead>
<tr>
<th>AE Grade</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdominal Pain</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anorexia</td>
<td>1</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>7</td>
<td>6</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Nausea</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Vomiting</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Wt Loss</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Baseline vs Week 24

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Week 24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Wt (SD)</td>
<td>82.7 kg (12.5)</td>
<td>77.1 kg (10.1)</td>
</tr>
<tr>
<td>Mean Wt change from BL</td>
<td>-</td>
<td>-5.6 kg</td>
</tr>
</tbody>
</table>

- 8 GI/weight loss AEs present at Week 48 (end of follow-up)
- 1 SAE: traumatic broken jaw during follow-up (unrelated to treatment)
Safety

GI Adverse Events and Weight Through Week 48

<table>
<thead>
<tr>
<th>AE Grade</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdominal Pain</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anorexia</td>
<td>1</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>7</td>
<td>6</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Nausea</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Vomiting</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Wt Loss</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Baseline vs Week 48

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Week 24</th>
<th>Week 48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Wt (SD)</td>
<td>82.7 kg (12.5)</td>
<td>77.1 kg (10.1)</td>
<td>80.5 kg (9.1)</td>
</tr>
<tr>
<td>Mean Wt change from BL</td>
<td>-</td>
<td>-5.6 kg</td>
<td>-2.2 kg</td>
</tr>
</tbody>
</table>

- 8 GI/weight loss AEs present at Week 48 (end of follow-up)
- 1 SAE: traumatic broken jaw during follow-up (unrelated to treatment)
HDV-RNA Drop From Baseline
13 Patients Across 24 Weeks

Mean decline after 24 weeks (ITT):
-1.7 log IU/mL (SD ± 1.5)

% with > 1 log decline: 9/15 (60%)
% with > 2 log decline: 4/15 (27%)

Pt 14: HDV-RNA < LLOQ @ Week 24
Pt 3: HDV-RNA undetectable @ Week 24
HDV-RNA Drop From Baseline

13 Patients Across 48 Weeks

> 2 log decline @ 48 Wk: 3/15 (20%)

Pt 14: HDV-RNA < LLOQ

Log HDV-RNA IU / mL

Week

EOT

EOFU

LLOD

Wedemeyer et al. 04--2017

LOWR-4: Lonafarnib for Hepatitis Delta
Responders
Maintained LNF 100 mg BID Through Wk 24

Patient 3
- 75 mg BID
- 100 mg BID

Patient 14
- 75 mg BID
- 100 mg BID

- HDV-RNA PCR negative @ Week 24
- HDV-RNA <LLOQ @ Week 16-24
- HDV-RNA <LLOQ @ Week 48
Post-treatment Responder & Relapser

Patient 5

- 75 mg BID
- 100 mg BID

Patient 2

- 75 mg QD
- 75 mg BID

- VL continues to decline post-treatment
- ALT flare = 938 U/L @ Week 32

- 4-log decline @ Week 24
Non - Responders

Patient 18

75 mg BID
100 mg BID
50 mg BID

Log Viral Load IU/mL

Week
EOT
EOFU

ALT (U/L)

Log HDV-RNA IU/mL

Patient 16

75 mg BID
100 mg BID

Log Viral Load IU/mL

Week
EOT
EOFU

ALT (U/L)

Log HDV-RNA IU/mL

• HDV RNA < 1 log decline at Week 24

Wedemeyer et al. 04--2017
LOWR-4: Lonafarnib for Hepatitis Delta
ALT Normalization

53% Patients Normalized ALT at End of Treatment
All Patients with Elevated ALT at End of Follow-Up

* ITT is shown including 2 early terminations
LOWR HDV – 4: Summary

At Week 24 – End of Treatment:
- 5/15 (33%) reached and maintained LNF 100 mg BID + RTV through EOT
 - 1/5 HDV-RNA undetectable; 1/5 dropped < 14 IU/mL (LLOQ)
- 53% patients normalized ALT

At Week 48 – End of Follow-up:
- 1/15 (7%) HDV RNA < 14 IU/mL (LLOQ)
- 3/15 (20%) dropped > 2 logs from baseline

Gastrointestinal AEs
- mostly grade 1-2
- 8/15 (53%) required dose reduction and 2/15 (13%) were discontinued

Inter-patient variability in efficacy and tolerability of LNF

Ongoing analysis:
- Role of host polymorphisms to explain interindividual variability in viral responses
- Role of host immune responses against HDV explaining long-term control
Conclusions

• This study confirmed an antiviral efficacy of lonafarnib over a period of 24 weeks

• Off-treatment HDV RNA control is possible in a proportion of patients

• Longer therapies and combination therapies need to be explored
Acknowledgment

Hannover Medical School:
 Kerstin Port, Katja Deterding, Anika Wranke, Bernhard Schlevogt,
 Janina Kirschner, Markus Cornberg, Michael Manns

Cato Europe GmbH
 Ulrike Kühr, Frank Tschubar

Eiger BioPharmaceuticals
 Eduardo Martins, Jeffrey Glenn, Shelly Xiong, Sharleen Xiong, Ingrid Choong

All patients who participated in the trial