FORWARD-LOOKING STATEMENTS

This presentation and the oral commentary contain “forward-looking” statements that involve substantial risks and uncertainties. All statements other than statements of historical facts, including statements regarding our future financial condition, timing for and outcomes of clinical results, business strategy and plans and objectives for future operations, are forward looking statements. These forward-looking statements include terminology such as “believe,” “will,” “may,” “estimate,” “continue,” “anticipate,” “contemplate,” “intend,” “target,” “project,” “should,” “plan,” “expect,” “predict,” “could,” “potentially” or the negative of these terms. Forward looking statements are our current statements regarding our intentions, beliefs, projections, outlook, analyses or current expectations concerning, among other things, our ongoing and planned clinical development, including whether Eiger would be permitted to file an NDA based on PRF data and the timing and outcome of any FDA meeting with respect to lonafarnib and Progeria, the D-LIVR study will be supported by the FDA as a single, pivotal study to support registration; the timing of and our ability to initiate or enroll clinical trials, including whether our D-LIVR study can be advanced by the end of this year; our ability to make timely regulatory filings and obtain and maintain regulatory approvals for lonafarnib as a single agent or in combination, ubenimex, PEG IFN lambda, exendin 9-39 and our other product candidates; our intellectual property position; and the potential safety, efficacy, reimbursement, convenience clinical and pharmaco-economic benefits of our product candidates as well as the commercial opportunities, including potential market sizes and segments; our ability to finance the continued advancement of our development pipeline products, including our results of operations, cash available, financial condition, liquidity, prospects, growth and strategies; and the potential for success of any of our product candidates.

Forward-looking statements involve known and unknown risks, uncertainties, assumptions and other factors that may cause our actual results, performance or achievements to be materially different from any future results, performance or achievements expressed or implied by the forward-looking statements. Forward-looking statements represent our beliefs and assumptions only as of the date of this presentation. Except as required by law, we assume no obligation to update these forward-looking statements publicly, or to update the reasons why actual results could differ materially from those anticipated in the forward-looking statements, even if new information becomes available in the future.

This presentation concerns products that have not yet been approved for marketing by the FDA. No representation is made as to their safety or effectiveness for the purposes for which they are being investigated.
Redefining Drug Development

Eiger is a late stage biopharmaceutical company focused on the development and commercialization of targeted therapies for multiple rare diseases.

We innovate by developing well-characterized drugs acting on newly identified or novel targets in rare diseases.

Our Lead Program is advancing Lonafarnib in Hepatitis Delta Virus (HDV) infection into Phase 3 with a single, pivotal trial planned to begin later this year.
Portfolio of Clinical Programs
Targeting Diverse Rare Indications

Multiple Programs Positioned for Success
NOVEL TARGETS VALIDATED

Faculty Inventors / Advisors

Jeffrey Glenn, MD, PhD
Tracey McLaughlin, MD, MPh
Stanley Rockson, MD
Leslie Gordon, MD, PhD*

Partners / Licensors

Eiger Biopharmaceuticals
Merck
Stanford Medicine
Bristol-Myers Squibb
Nippon Kayaku
WHY IS EIGER DIFFERENT?

- **Lonafarnib**: HDV
- **Lambda***: HDV
- **Lonafarnib**: Progeria
- **Exendin 9-39**: PBH
- **Ubenimex**: Lymphedema

MULTIPLE RARE DISEASE PROGRAMS
Unmet medical needs with potentially large markets

WELL-CHARACTERIZED COMPOUNDS
Clinical Proof of Concept Demonstrated

ADVANCING PIPELINE TO LATE STAGE
Progeria Program Expands Opportunity

STRATEGIC OPPORTUNITIES TO FINANCE PROGRAMS
Finance to NDA, partnership for non-dilutive capital, licensing

EXPERIENCED MANAGEMENT
In development, sales and marketing for rare diseases

pegylated interferon lambda
EIGER PIPELINE AND MILESTONES

Lead Program in HDV Advancing to Phase 3 in 2018

<table>
<thead>
<tr>
<th></th>
<th>Q1 2018</th>
<th>Q2 2018</th>
<th>Q3 2018</th>
<th>Q4 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lonafarnib</td>
<td></td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEG IFN Lambda</td>
<td></td>
<td></td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Progeria</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lonafarnib</td>
<td></td>
<td></td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>PBH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exendin 9-39</td>
<td></td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lymphedema</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ubenimex</td>
<td></td>
<td></td>
<td>✔️</td>
<td></td>
</tr>
</tbody>
</table>

- **Completed**
- **Planned**

- **Initiating Phase 3 D-LIVR Study**
- **FDA Meeting**
- **Phase 2 LIFT (Combo) Study Enrollment**
- **Phase 2 LIMT (Mono) Study EOT Data**
- **Expanded License PRF Partnership**
- **Agency Guidance**
- **Phase 2 PREVENT Study Data**
- **Phase 2 ULTRA Study Data**
OVERVIEW

- HDV is the most severe form of human viral hepatitis
- HDV is always a co-infection with HBV
 - HDV requires HBsAg to complete virion assembly
 - HBsAg acquired through protein prenylation
- 4-6% of HBV infected patients co-infected with HDV
- HDV causes more rapid disease progression
 - Compared to HBV mono-infection
- No FDA approved Rx
- 15-20 M HDV infected patients worldwide
 - > 100K patients in US; > 200K patients in EU

HDV consists of a single stranded, circular RNA virus, with an envelope made up of HBsAg.
AT DIAGNOSIS, >50% OF HDV PATIENTS ARE CIRRHOTIC

Risk of Hepatocellular Carcinoma, Decompensation, Mortality Increase

Evolution from Chronic Active Hepatitis to Cirrhosis

Follow-up Years

Progression to Cirrhosis (%)

- HBV + HDV
- HBV

P = 0.001

Cumulative Survival

Survival

Time to Event (Years)

- HBV
- HBV + HDV

P = 0.0002

HDV WORLDWIDE PREVALENCE: 15-20 MILLION

6% of HBV Population Co-Infected with HDV

Foreign-born individuals now comprise majority of HDV population in North America and Western Europe.
PEG IFNα REDUCED HDV RNA IN PATIENTS

Not Approved for HDV

Mean Change in Log HDV-RNA

HIDIT -2: PEG IFNα 180 mcg QW + tenofovir (N=91)

HIDIT – 2 Study

Wobse et al, Hepatology 2014
Wedemeyer et al, Hepatology 2014
REDUCING HDV-RNA WITH IFN-α IMPROVED SURVIVAL

Improved Clinical Benefit without Clearance of HDV-RNA

Interferon-α for 48 weeks with 15 year Follow Up

EIGER: DEVELOPING COMPLEMENTARY DRUGS FOR HDV

Multiple Treatment Options

- **Lonafarnib**
 - **Lonafarnib + Ritonavir**
 - *All Oral Rx*
 - Lonafarnib + Ritonavir + PEG IFN Lambda
 - *Combination Rx*
- **PEG IFN Lambda**
 - **PEG IFN Lambda**
 - *Sub Q Rx*
COMPLEMENTARY MECHANISMS AGAINST HDV

HDV genome encodes for a single protein, the hepatitis delta antigen.

HDV relies on host cell machinery for replication.

New virions can be assembled only in the presence of hepatitis B virus.
LONAFARNIB FOR HDV

Well-characterized Clinical Stage Lead Compound

- Small molecule, oral, prenylation inhibitor

- Well-characterized through Phase 3
 - >2,000 patients dosed in oncology program by Merck (Schering)
 - Dose limiting toxicity is GI (class effect)

- Over 120 HDV patients dosed across international sites

- HDV Orphan Designation in US & EU, Fast Track in US

- Prenylation is a host target; potential barrier to resistance

Phase 2 proof of concept study conducted at NIH; NIH Phase 2 study results published: Koh et al, *Lancet Infect Dis*, 2015
LONAFARNIB DECREASED HDV-RNA VIRAL LOAD IN PHASE 2 STUDIES

4 Week Reduction in HDV-RNA with Lonafarnib

National Institutes of Health NIH POC	Ankara University LOWR HDV -1 EASL 2015	Combination Therapy	
Placebo	Lonafarnib 100 mg BID	Lonafarnib 100 mg TID	Lonafarnib 100 mg BID + Ritonavir 100 mg QD
N = 4	Mean ∆ - 0.2 Log	Mean ∆ - 1.2 Log	Mean ∆ - 2.4 Log
Lonafarnib 100 mg BID	Mean ∆ - 0.74 Log	Mean ∆ - 1.6 Log	N = 3
Lonafarnib 200 mg BID	Mean ∆ - 1.6 Log	Mean ∆ - 2.0 Log	N = 3
Lonafarnib 100 mg TID		Mean ∆ - 1.8 Log	N = 3
Lonafarnib 200 mg BID			N = 3
Lonafarnib 300 mg BID			N = 3

LOWR HDV = LOnafarnib With Ritonavir in HDV; Yurdaydin, C. et al, *Hepatology* 2018; 67:1224
ALL-ORAL REGIMEN: POTENTIAL FOR IFN-FREE OPTION

Lonafarnib 50 mg BID + Ritonavir 100 mg BID

Yurdaydin et al, J Hepatology 2018, Abstract #PS-161
COMBO REGIMEN: GREATEST DECLINE IN HDV-RNA

Lonafarnib 50 mg BID + Ritonavir 100 mg BID + PEG IFN-alfa-2a

Yurdaydin et al, *J Hepatology* 2018, Abstract #PS-161
HIGH RESPONSE RATES IN LOW BASELINE VIRAL LOAD

All-Oral: Lonafarnib 50 mg BID + Ritonavir 100 mg BID

<table>
<thead>
<tr>
<th>Regimen</th>
<th># Patients Dosed 24 Weeks</th>
<th># of Patients</th>
<th>BL VL ≤ 4 log (%)</th>
<th>BL VL > 4 log (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>< LLOQ (%)</td>
<td>≥ 2 log decline (%)</td>
</tr>
<tr>
<td>LNF 50 mg BID + RTV 100 mg BID + PEG IFN-α</td>
<td>4</td>
<td>0 / 0 (0%)</td>
<td>0 / 0 (0%)</td>
<td>2 / 4 (50%)</td>
</tr>
<tr>
<td>LNF 25 mg BID + RTV 100 mg BID + PEG IFN-α</td>
<td>5</td>
<td>1 / 1 (100%)</td>
<td>1 / 1 (100%)</td>
<td>2 / 4 (50%)</td>
</tr>
<tr>
<td>LNF 50 mg BID + RTV 100 mg BID</td>
<td>12</td>
<td>5 / 5 (100%)</td>
<td>5 / 5 (100%)</td>
<td>0 / 7 (0%)</td>
</tr>
<tr>
<td>LNF 25 mg BID + RTV 100 mg BID</td>
<td>6</td>
<td>0 / 3 (0%)</td>
<td>0 / 3 (0%)</td>
<td>0 / 3 (0%)</td>
</tr>
</tbody>
</table>

Per protocol analysis

Yurdaydin et al, *J Hepatology* 2018, Abstract #PS-161
RESPONSE RATES IN HIGH BASELINE VIRAL LOAD HDV

Combination: Lonafarnib 50 mg BID + Ritonavir 100 mg BID + PEG IFN-alfa-2a

<table>
<thead>
<tr>
<th>Regimen</th>
<th># of Patients Dosed 24 Weeks</th>
<th># Patients</th>
<th>BL VL ≤ 4 log (%)</th>
<th>BL VL > 4 log (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>< LLOQ (%)</td>
<td>≥ 2 log decline (%)</td>
</tr>
<tr>
<td>LNF 50 mg BID + RTV 100 mg BID + PEG IFN-α</td>
<td>4</td>
<td>0 / 0 (0%)</td>
<td>0 / 0 (0%)</td>
<td>2 / 4 (50%)</td>
</tr>
<tr>
<td>LNF 25 mg BID + RTV 100 mg BID + PEG IFN-α</td>
<td>5</td>
<td>1 / 1 (100%)</td>
<td>1 / 1 (100%)</td>
<td>2 / 4 (50%)</td>
</tr>
<tr>
<td>LNF 50 mg BID + RTV 100 mg BID</td>
<td>12</td>
<td>5 / 5 (100%)</td>
<td>5 / 5 (100%)</td>
<td>0 / 7 (0%)</td>
</tr>
<tr>
<td>LNF 25 mg BID + RTV 100 mg BID</td>
<td>6</td>
<td>0 / 3 (0%)</td>
<td>0 / 3 (0%)</td>
<td>0 / 3 (0%)</td>
</tr>
</tbody>
</table>

Per protocol analysis

Yurdaydin et al, J Hepatology 2018, Abstract #PS-161
LONAFARNIB PHASE 2 HDV PROGRAM

Dose, Combinations and Endpoints Defined

- **All-oral**: LNF + RTV
 - 7 of 18 (39%) patients ≥ 2 log decline or BLQ at Week 24
 - Higher response rates (5 of 5, 100%) in low baseline viral load patients

- **Combination**: LNF + RTV + PEG IFN-alfa-2a
 - Results in highest response rates
 - 8 of 9 (89%) patients ≥ 2 log decline or BLQ at Week 24

- Majority of patients normalized ALT at Week 24

- Predominant AEs were GI-related (mild / moderate)
PEGYLATED INTERFERON LAMBDA

A Better Tolerated Interferon*

• A novel first in class Type III interferon

• Binds to a unique receptor versus Type I interferons
 - Highly expressed on hepatocytes
 - Limited expression on hematopoietic cells and CNS cells

• Uses similar downstream signaling pathway as Type I interferons

• Greater than 3,000 patients in 17 clinical trials (HCV / HBV)

• Comparable antiviral activity with less of the typical IFN alfa related side effects*

*Chan, HLY et al, J Hepatology 2016
LIMT HDV PHASE 2 STUDY

Lambda Interferon MonoTherapy Study in HDV

Goals:
- Demonstrate comparable activity to historical PEG IFN-alfa-2a
- Demonstrate better tolerability to historical PEG IFN-alfa-2a

Arm 1
- n = 17
- LMD 120 mcg QW
- Follow-up

Arm 2
- n = 16
- LMD 180 mcg QW
- Follow-up

On-treatment
- 48 weeks

Post-treatment
- 24 weeks

Enrollment Completed
- N=33
LAMDBDA DEMONSTRATES RAPID DECLINE IN HDV-RNA*

Mean Change in HDV RNA

<table>
<thead>
<tr>
<th>Week</th>
<th>N</th>
<th>≥ 2 log decline</th>
<th>PCR-negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>33</td>
<td>7 (21.2%)</td>
<td>3 (9.1%)</td>
</tr>
<tr>
<td>8</td>
<td>32</td>
<td>12 (36.4%)</td>
<td>5 (15.6%)</td>
</tr>
<tr>
<td>12</td>
<td>23</td>
<td>9 (39.1%)</td>
<td>4 (17.4%)</td>
</tr>
<tr>
<td>24</td>
<td>10</td>
<td>5 (50.0%)</td>
<td>4 (40.0%)</td>
</tr>
</tbody>
</table>

LIMT HDV - PEG IFN lambda
LIMT HDV STUDY

Interim Results (Week 24) Presented at AASLD 2017 *

• Lambda demonstrated comparable anti-HDV activity to historical PEG-Alfa

• Lambda was well tolerated in the majority of patients

• Lambda is a promising investigational agent, alone or in combination Rx in HDV

• End of Treatment (Week 48) data in 4Q 2018

*Hamid S et al, Hepatology 2017
PLANNED HDV REGISTRATION PROGRAM

Face to Face Meeting with FDA on February 14, 2018

D-LIVR (Delta Liver Improvement and Virologic Response in HDV); N~300; multicenter study

- **All-oral Arm** (LNF/RTV) and **Combination Arm** (LNF / RTV + PEG IFN-α)
 - Each arm compared to placebo arm (HBV nucleos(t)ide therapy alone)
 - PEG IFN-α alone arm to demonstrate contribution of effect; superiority over this arm not required

Endpoints and study duration for D-LIVR to be defined with Agency in mid-2018 (by telecon)

Plan to initiate D-LIVR study by end of 2018 (following feedback from FDA on study design)
D-LIVR: PLANNED PHASE 3 STUDY

Delta Liver Improvement and Virologic Response in HDV

- **LNF / RTV All-Oral**
 - LNF arms compared to Placebo

- **LNF / RTV + PEG IFN α Combination**
 - Superiority over PEG IFN α not required

- **PEG IFN-α Mono**
 - PEG IFN-α arm to assess contribution only

- **Placebo**
 - Placebo arm on background Nuc* only

Nuc = HBV nucleoside or nucleotide Rx. All patients will be on background HBV nuc therapy
HBV APPROVALS AND REGISTRATION ENDPOINTS

Focus on Viral Load Reduction, Biochemical Response, Histologic Improvement*

<table>
<thead>
<tr>
<th>Brand (generic)</th>
<th>Approved</th>
<th>Primary Endpoint(s)</th>
<th>Secondary Endpoint(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intron A® (interferon alfa-2b)</td>
<td>1991</td>
<td>HBeAg + HBV DNA</td>
<td>HBsAg + ALT + Histology</td>
</tr>
<tr>
<td>Epivir HBV® (lamivudine)</td>
<td>1998</td>
<td>Histology*</td>
<td>HBeAg + HBV DNA</td>
</tr>
<tr>
<td>Hepsera® (adefovir dipivoxil)</td>
<td>2002</td>
<td>Histology*</td>
<td>HBV DNA + ALT + HBeAg</td>
</tr>
<tr>
<td>Baraclude® (entecavir)</td>
<td>2005</td>
<td>Histology*</td>
<td>HBV DNA + ALT</td>
</tr>
<tr>
<td>Pegasys® (peginterferon alfa-2a)</td>
<td>2005</td>
<td>HBeAg</td>
<td>HBV DNA + ALT + Histology</td>
</tr>
<tr>
<td>Tyzeka® (telbivudine)</td>
<td>2006</td>
<td>HBV DNA + HBeAg or ALT</td>
<td>Histology + ALT</td>
</tr>
<tr>
<td>Viread® (tenofovir disoproxil fumurate)</td>
<td>2008</td>
<td>HBV DNA + Histology</td>
<td>ALT</td>
</tr>
<tr>
<td>Vemlidy® (tenofovir alafenamide)</td>
<td>2016</td>
<td>HBV DNA</td>
<td>ALT + HBsAg + HBeAg</td>
</tr>
</tbody>
</table>

* ≥ 2 point decrease in the Knodell necro-inflammatory score with no worsening of the Knodell fibrosis score
FDA GUIDANCE ON HDV LAMBDA PROGRAM

“LIFT” Lambda Interferon Combination Therapy Study to Advance in Parallel

D-LIVR (Delta Liver Improvement and Virologic Response in HDV); N~300; multicenter study

All-oral Arm (LNF/RTV) and Combination Arm (LNF / RTV + PEG IFN-α)

- Each arm compared to placebo arm (HBV nucleos(t)ide therapy alone)
- PEG IFN-α alone arm to demonstrate contribution of effect; superiority over this arm not required

Endpoints and study duration for D-LIVR to be defined with Agency in mid-2018 (by telecon)

Agency supports continued Lambda development in HDV (Phase 2 combo data requested)

- LIFT (Lambda InterFeron combination Therapy): Lambda in combination with LNF / RTV
- To be conducted at the NIH; enrollment in 2Q 2018
LIFT: PHASE 2 LAMBDA COMBO STUDY

Lambda InterFeron combination Therapy

- Open-label, Phase 2 study evaluating Lambda + LNF + RTV
- To be conducted at the NIH
- Screening and Enrollment Ongoing

Primary Endpoint:
- ≥ 2 Log HDV RNA reduction at EOT

Secondary Endpoint:
- Histological Improvement (biopsy confirmed*)
HDV PROGRAM: PREPARING FOR REGISTRATION

<table>
<thead>
<tr>
<th></th>
<th>Q1 2018</th>
<th>Q2 2018</th>
<th>Q3 2018</th>
<th>Q4 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDV Lonafarnib</td>
<td></td>
<td>FDA Meeting</td>
<td></td>
<td>Initiating Phase 3 D-LIVR Study</td>
</tr>
<tr>
<td>HDV PEG IFN Lambda</td>
<td></td>
<td></td>
<td>Phase 2 LIFT (Combo) Study Enrollment</td>
<td>Phase 2 LIMT (Mono) Study EOT Data</td>
</tr>
</tbody>
</table>

- **Completed**: FDA Meeting
- **Planned**: Initiating Phase 3 D-LIVR Study, Phase 2 LIFT (Combo) Study Enrollment, Phase 2 LIMT (Mono) Study EOT Data
OVERVIEW

- Ultra-rare, premature, fatal aging pediatric disease

- Point mutation in the Lamin A gene
 - Results in a farnesylated aberrant protein, Progerin
 - Disruption of scaffold structure of the nuclear membrane

- Accelerated atherosclerosis with cardiovascular decline

- Average lifespan = 14.5 years

- Prevalence of 1 in 20 million (~400 worldwide)

- No FDA approved Rx

- >80 Children treated with lonafarnib
ACCUMULATION OF PROGERIN
Disrupts Cell Scaffold, Leads to Disfigurement of Nucleus

Normal Lamin A Generation

Progerin Generation

Lonafarnib blocks production of Progerin
WORLDWIDE PREVALENCE ESTIMATE ~ 400 CHILDREN

147 Identified Across 47 Countries Worldwide with Progeria

147 Patients Identified Worldwide
- HGPS* W/W = 114
- Progeroid Laminopathies W/W = 33

25 Patients Identified in U.S.
- HGPS* U.S. = 16
- Progeroid Laminopathies** U.S. = 9

* HGPS have a progerin-producing mutation in the LMNA gene
** Progeroid Laminopathies have a mutation in the lamin pathway but do not produce progerin
SURVIVAL OF UNTREATED PROGERIA CHILDREN

Average Lifespan = 14.5 Years

LONAFARNib IMPROVES SURVIVAL IN PROGERIA

77% Reduction in Risk of Mortality Compared to No Treatment

Average follow-up period of 2.2 years

Hazard Ratio = 0.23, p = 0.04

Gordon, L et al, JAMA, 2018, 319(16): 1687
PROGERIA: A PEDIATRIC RARE DISEASE

Consistent with Eiger Mission, Vision, and Values

• Eiger to continue to provide lonafarnib to PRF for clinical studies in Progeria

• Eiger to ensure that lonafarnib treatment is available to children with Progeria W/W

• Eiger to seek FDA / EMA / ROW guidance on approval pathway for lonafarnib in Progeria

• Eiger to control W/W regulatory development, pricing, distribution of lonafarnib for Progeria
KEY AGREEMENT TERMS
Eiger, Merck, Progeria Research Foundation Lonafarnib Agreements

Merck License Agreement Amendment

• Expansion of exclusively licensed field to include all uses of lonafarnib in Progeria
• Eiger manufactures and supply lonafarnib to PRF
• Merck receives no up-front, no milestones, no royalties related to lonafarnib in Progeria
• Eiger retains exclusive rights to commercialize lonafarnib for approved indications
• Merck grants no rights or licenses to third parties to commercialize lonafarnib for any use outside of use licensed to Eiger

PRF Collaboration and Supply Agreement

• Eiger and PRF collaborating in the pursuit of regulatory approval of lonafarnib for Progeria
• PRF grants Eiger a non-exclusive, worldwide, royalty-free, sub-licensable license under all IP and data controlled by PRF to prepare and file any NDA
• Eiger establishes a patient support program in Progeria
• Eiger prepares and is the sponsor of the NDA
• Proceeds from the sale of a priority review voucher that Eiger may receive as the sponsor is shared equally (50/50) between Eiger and PRF
PROGERIA PROGRAM: PREPARING FOR APPROVAL

<table>
<thead>
<tr>
<th></th>
<th>Q1 2018</th>
<th>Q2 2018</th>
<th>Q3 2018</th>
<th>Q4 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDV Lonafarnib</td>
<td>FDA Meeting</td>
<td></td>
<td></td>
<td>Initiating Phase 3 D-LIVR Study</td>
</tr>
<tr>
<td>HDV PEG IFN Lambda</td>
<td></td>
<td>Phase 2 LIFT (Combo) Study</td>
<td></td>
<td>Phase 2 LIMT (Mono) Study</td>
</tr>
<tr>
<td>Progeria Lonafarnib</td>
<td></td>
<td>Expanded License PRF Partnership</td>
<td></td>
<td>Regulatory Guidance</td>
</tr>
</tbody>
</table>
EXENDIN 9-39: POST-BARIATRIC HYPOGLYCEMIA (PBH)

A Chronic, Debilitating Condition

OVERVIEW

• Bariatric Surgery Increasing due to Morbid Obesity
 - ~200K US / ~100K EU in 2015*
 - Roux-en-Y Gastric Bypass ~35% of all procedures

• Postprandial Hypoglycemia: A Debilitating Complication
 - Elevated GLP-1 and Hyperinsulinemia Documented
 - Impacts 5-10% of Roux-en-Y patients

• PBH estimated prevalence ~70K in US / EU

• Exendin 9-39 is a targeted GLP-1 antagonist
 - Well characterized in Phase 1 / 2 clinical studies

* American Society for Metabolic and Bariatric Surgery 2015
EXENDIN 9-39 IS A GLP-1 ANTAGONIST
Normalizes Insulin Secretion

ALTERED NUTRIENT TRANSIT
POST ROUX-EN-Y GASTRIC BYPASS
HYPER-SECRETION OF GLP-1
INSULIN SECRETION
SYMPTOMATIC HYPOGLYCEMIA

Autonomic
- Sweating
- Shaking
- Palpitations
- Hunger

Neuroglycopenic
- Blurred vision
- Confusion
- Drowsiness
- Odd behavior
- Speech difficulty
- Incoordination
- Dizziness
- Inability to concentrate

Craig et al. Diabetes, Obesity and Metabolism 2017

Exendin 9-39 - GLP-1 Receptor Blockade
EXENDIN 9-39 IS A GLP-1 ANTAGONIST

31 Amino Acid Fragment of Byetta (exenatide), a GLP-1 Agonist

- Phase 2 proof of concept demonstrated in PBH Patients
 - 36 patients dosed (IV and Sub-cutaneous)
 - Three clinical studies completed (POC, SAD, MAD)

- Previous experience as investigational agent
 - >300 patients reported dosed worldwide*

- Novel Liquid Formulation Developed

- Orphan Designation Granted in US and EU

* www.clinicaltrials.gov
PHASE 2 CLINICAL PROOF OF CONCEPT COMPLETED

36 Patients Dosed in Clinical Studies with Exendin 9-39

<table>
<thead>
<tr>
<th>Study</th>
<th># Patients</th>
<th>Duration of Dosing</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV Infusion</td>
<td>8</td>
<td>Single dose</td>
<td>Published Diabetologia</td>
</tr>
<tr>
<td>Sub Q Injection SAD Study</td>
<td>8</td>
<td>Single dose</td>
<td>Presentation at 2016 ADA Published Diabetes, Obesity and Metabolism</td>
</tr>
<tr>
<td>Sub Q Injection MAD Study*</td>
<td>20</td>
<td>Up to 3 days BID dosing</td>
<td>Presentation at 2017 ADA</td>
</tr>
</tbody>
</table>

* Comparison of lyophilized powder and novel liquid formulation.
EXENDIN 9-39 REDUCED PBH

Single Ascending Dose Study Results

* P < 0.05, ** P < 0.01

Craig C et al, Diabetes, Obesity and Metabolism 2017
PBH PROGRAM: ADDITIONAL PHASE 2 DATA 2H 2018

Phase 2, Placebo-Controlled, Multi-Center, PREVENT Study (N=20) Enrolling

<table>
<thead>
<tr>
<th></th>
<th>Q1 2018</th>
<th>Q2 2018</th>
<th>Q3 2018</th>
<th>Q4 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDV</td>
<td>Lonafarnib</td>
<td>FDA Meeting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDV</td>
<td>PEG IFN Lambda</td>
<td>Phase 2 LIFT (Combo) Study Enrollment</td>
<td>Phase 2 LIMT (Mono) Study EOT Data</td>
<td></td>
</tr>
<tr>
<td>Progeria</td>
<td>Lonafarnib</td>
<td>Expanded License PRF Partnership</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PBH</td>
<td>Exendin 9-39</td>
<td></td>
<td></td>
<td>Phase 2 PREVENT 28-day Study Data</td>
</tr>
</tbody>
</table>

- **INITIATING PHASE 3 D-LIVR STUDY**

- **Agency Guidance**
UBENIMEX: PRIMARY AND SECONDARY LYMPHEDEMA

OVERVIEW

• Lymphedema: State of vascular insufficiency
 - Decreased clearance of interstitial fluid
 - Debilitating architectural alterations in skin and tissues

• Primary Lymphedema – hereditary
 - Estimated US < 50,000 (Orphan)

• Secondary Lymphedema – due to causative event
 - Estimated US / EU ~1 million +

• LTB₄ is elevated in animal models and human lymphedema*
 - Targeted blockade of LTB₄ improves preclinical lymphedema

• Ubenimex is an oral, small molecule inhibitor of LTA₄H
 - Well characterized, marketed in JP since 1987 (different indication)

* Tian et al, Sci Trans Med 2017
Leukotriene B₄ antagonism ameliorates experimental lymphedema

Arachidonic Acid

- 5-LO
- COX1
- COX2
- Ibuprofen

Cysteinyl Leukotrienes

- LTA₄
- LTC₄S
- LTB₄
- Montelukast

Receptor Blocker

- BLT1, BLT2

COX Inhibitors

- Ketoprofen
- Ubenimex

5-LO Inhibitors

- Zileuton

Reference

Rockson et al, Science Translational Medicine May 2017
UBENIMEX

Potential for Disease Modification

• Oral, small molecule, LTA₄H inhibitor
• Well-characterized, well-tolerated as labeled
• Marketed as an adjuvant to chemotherapy in JP since 1987
• Never introduced in the US or EU
UBENIMEX FOR LYMPHEDEMA: DATA IN 2H 2018

Phase 2, Placebo-Controlled, Multi-Center Study, Enrolled (N=54) and Dosing

Potential for 1st Rx and Disease Modifying Therapeutic

Entry Criteria:
- Primary or Secondary Lymphedema of the lower limb(s)

Primary Endpoint:
- Skin thickness

Secondary Endpoint:
- Histology, limb volume, symptom measures

Efficacy Evaluation

Months 1 – 6

Ubenimex 150 mg TID

Placebo

Enrollment Complete N = 54

50
LYMPHEDEMA PROGRAM: DELIVERING PHASE 2 DATA 2H 2018

<table>
<thead>
<tr>
<th></th>
<th>Q1 2018</th>
<th>Q2 2018</th>
<th>Q3 2018</th>
<th>Q4 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDV</td>
<td></td>
<td></td>
<td></td>
<td>Initiating Phase 3 D-LIVR Study</td>
</tr>
<tr>
<td>Lonafarnib</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDV</td>
<td></td>
<td></td>
<td></td>
<td>Phase 2</td>
</tr>
<tr>
<td>PEG IFN Lambda</td>
<td></td>
<td></td>
<td></td>
<td>LIFT (Combo) Study</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Enrollment</td>
</tr>
<tr>
<td>Progeria</td>
<td></td>
<td></td>
<td></td>
<td>Phase 2</td>
</tr>
<tr>
<td>Lonafarnib</td>
<td></td>
<td></td>
<td></td>
<td>LIMT (Mono) Study</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EOT Data</td>
</tr>
<tr>
<td>PBH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exendin 9-39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lymphedema</td>
<td></td>
<td></td>
<td></td>
<td>Phase 2</td>
</tr>
<tr>
<td>Ubenimex</td>
<td></td>
<td></td>
<td></td>
<td>ULTRA Study Data</td>
</tr>
<tr>
<td></td>
<td>Completed</td>
<td>Planned</td>
<td>Completed</td>
<td></td>
</tr>
</tbody>
</table>
EIGER PIPELINE AND MILESTONES

Lead Program in HDV Advancing to Phase 3 in 2018

<table>
<thead>
<tr>
<th></th>
<th>Q1 2018</th>
<th>Q2 2018</th>
<th>Q3 2018</th>
<th>Q4 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDV Lonafarnib</td>
<td></td>
<td></td>
<td></td>
<td>✔️ Initiating Phase 3 D-LIVR Study</td>
</tr>
<tr>
<td>HDV PEG IFN Lambda</td>
<td></td>
<td></td>
<td>✔️ Phase 2 ULTRA Study Data</td>
<td></td>
</tr>
<tr>
<td>Progeria Lonafarnib</td>
<td></td>
<td>✔️ Expanded License PRF Partnership</td>
<td></td>
<td>✔️ Agency Guidance</td>
</tr>
<tr>
<td>PBH Exendin 9-39</td>
<td></td>
<td></td>
<td>✔️ Phase 2 PREVENT 28-day Study Data</td>
<td></td>
</tr>
<tr>
<td>Lymphedema Ubenimex</td>
<td></td>
<td></td>
<td></td>
<td>✔️ Phase 2 ULTRA Study Data</td>
</tr>
</tbody>
</table>
EXPERIENCED MANAGEMENT

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Logos</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAVID CORY, RPH, MBA</td>
<td>President and CEO</td>
<td>gsk, INTERMUNE, Prestwick, COTHERIX</td>
</tr>
<tr>
<td>DAVID APELIAN, MD, PHD, MBA</td>
<td>Chief Operating Officer, Executive Medical Officer</td>
<td>ACHILLION, GLOBE IMMUNE, Bristol-Myers Squibb, Schering-Plough</td>
</tr>
<tr>
<td>JIM WELCH, MBA</td>
<td>Chief Financial Officer</td>
<td>AcelRx, virobay, RIGEL, Cerimon Pharmaceuticals</td>
</tr>
<tr>
<td>LISA PORTER, MD</td>
<td>Chief Medical Officer, Metabolic Diseases</td>
<td>gsk, AMYLIN, SB, SmithKline Beecham, ZENECA Pharmaceuticals</td>
</tr>
<tr>
<td>JIM SHAFFER, MBA</td>
<td>Chief Business Officer</td>
<td>gsk, INTERMUNE, Halozyme, New River Pharmaceuticals, MERCK</td>
</tr>
</tbody>
</table>
SEASONED BOARD

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>THOMAS DIETZ, PHD</td>
<td>Chairman</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAVID CORY, RPH, MBA</td>
<td>President and CEO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAVID APELIAN, MD, PHD, MBA</td>
<td>COO and EMO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVAN LOH, MD</td>
<td>Independent Director</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JEFFREY GLENN, MD, PHD</td>
<td>Independent Director</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELDON MAYER, MBA</td>
<td>Independent Director</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CONQUERING RARE DISEASES