Week 72 Results of the Phase 3 *D-LIVR* Study: a Randomized Double-Blind, Placebo-Controlled Trial, Evaluating the Safety and Efficacy of Lonafarnib-Boosted with Ritonavir with or without Peginterferon Alfa in Patients with Chronic Hepatitis Delta Ohad Etzion*¹, Saeed Hamid*², Tarik Asselah³, George Gherlan⁴, Adela Turcanu⁵, Tsarynna Petrivna⁶, Lisa Weissfeld⁷, Ingrid Choong⁸, Colin Hislop⁸, David Apelian⁸, Maria Buti⁹, Liliana Gheorghe¹⁰, George Stancu¹⁰, Natalia Voronkova¹¹, Natalia Barsukova¹², Soo Aleman¹³, Jordan Feld¹⁴, Nancy Reau¹⁵, Maurizia Brunetto¹⁶, Pietro Lampertico¹⁷, Theo Heller¹⁸, Chris Koh¹⁸, Cihan Yurdaydin¹⁹, Jeffrey Glenn²⁰ ¹Soroka University Medical Center, Beersheva, Israel; ²Aga Khan University, Karachi, Pakistan; ³Hôpital Beaujon, APHP, Clichy and the University of Paris, Paris France; ⁴Spital General Fundatia "Dr. Victor Babes", Bucharest, Romania; ⁵"Nicolae Testemitanu" SUMPh, Chisinau, Moldova; ⁶Medical Center "OK!Clinic+" of international Institute of Clinical Reasearch LLC, Ukraine; ⁷WCG Statistics Collaborative Inc. MD, USA; ⁸Eiger Biopharmaceuticals; ⁹Hospital Universitari Vall d'Hebron, Barcelona, Spain; ¹⁰Institutul Clinic Fundeni, Bucharest, Romania; ¹¹H-Clinic, LLC, Moscow, Russia; ¹²LLC "Center for targeted therapy", Moscow, Russia; ¹³Karolinska Universitetssjukhuset, Huddinge, Sweden; ¹⁴University Health Network, Toronto, Canada; ¹⁵Rush University Medical Center, Chicago IL, USA; ¹⁶Azienda Ospedaliero Universitaria Pisana (Presidio di Cisanello), Pisa, Italy; ¹⁷University of Milan / Fondazione IRCCS CA' Granda Ospedale Maggiore Policlinico, Milan, Italy; ¹⁸Liver Disease Branch, NIDDK, NIH, Bethesda MD, USA; ¹⁹Koc University Hospital, Istanbul, Turkey; ²⁰Stanford University School of Medicine, Palo Alto CA, USA. ^{*}Equal contribution ## **Background** - HDV is a small satellite virus that depends on the surface antigen of HBV for host infection¹ - ❖ Global prevalence of 10-20 million people² - * Rapid progression to cirrhosis and a higher rate of ESLD complications, HCC, and death compared to HBV mono-infection³ - No FDA-approved therapy; single drug in the process of FMA (EMA) - ❖ Treatment for HDV presents an urgent unmet medical need ¹Yardeni D, et al. Chronic hepatitis D-What is changing? J Viral Hepat. 2022 Apr;29(4):240-251..²Stockdale AJ et al. The global prevalence of hepatitis D virus infection: Systematic review and meta-analysis. J Hepatol. 2020 Sep;73(3):523-532. ³Romeo R et al. A 28-year study of the course of hepatitis delta infection: a risk factor for cirrhosis and hepatocellular carcinoma. *Gastroenterology*. 2009; **136**: 1629- 1638. #### Lonafarnib - First-in-class prenylation inhibitor¹ - LNF disrupts virus assembly by inhibiting the prenylation of LHDAg and its binding to HBsAg - LNF showed suppression of HDV levels in a proof-of-concept study² - Improved efficacy and tolerability of LNF boosted with RTV and in combination with pegIFN Alfa for 24 weeks³⁻⁴ ¹Glenn JS et al. Identification of a prenylation site in delta virus large antigen. Science. 1992 May 29;256(5061):1331-3. ²Koh C et al. Oral prenylation inhibition with lonafarnib in chronic hepatitis D infection: a proof-of-concept randomized, double-blind, placebo-controlled phase 2A trial. ³Yurdaydin C et al. Optimizing lonafarnib treatment for the management of chronic delta hepatitis: The LOWR HDV-1 study. Hepatology. 2018 Apr;67(4):1224-1236 ⁴Yurdaydin C et al. A phase 2 dose-finding study of lonafarnib and ritonavir with or without interferonalpha for chronic delta hepatitis. Hepatology. 2022 Jun;75(6):1551-1565. # D-LIVR Phase 3 Clinical trial #### **Objective** To evaluate the safety, tolerability, and efficacy of LNF boosted with RTV with or without pegIFN Alfa for treatment of chronic HDV infection compared to placebo # Primary Endpoint at Week 48 ≥ 2 log decline in HDV RNA + Normalization of ALT # Secondary Endpoint at Week 48 No worsening in fibrosis + ≥ 2-point in Ishak HAI Score #### **Key Inclusion criteria** CHD with compensated liver disease HDV RNA > 500 IU/mL ALT > 1.3X < 10X ULN HBV DNA < 20 IU/mL #### **D-LIVR**: Patient Disposition #### **D-LIVR:** Baseline Patient Characteristics | | | Placebo
(n=52) | LNF + RTV
(n=178) | LNF + RTV + Alfa
(n=125) | Alfa
(n=52) | Total
(N=407) | |---------------------------------|--------------------|-----------------------|-------------------------|-----------------------------|-------------------|-------------------| | Mean age, y (SD) | | 45.7 (10.9) | 42.9 (10.8) | 41.4 (11.5) | 42.3 (11.0) | 42.7 | | Men, n (%) | | 39 (75) | 126 (71) | 84 (67) | 33 (64) | 282 (69) | | Race, n (%) | White | 42 (81) | 130 (73) | 85 (68) | 41 (79) | 298 (73) | | | Asian | 10 (19) | 40 (23) | 35 (28) | 10 (19) | 95 (23) | | | Black | 0 | 3 (2) | 3 (2) | 0 | 6 (2) | | | Other/no reported | 0 | 5 (3) | 1 (1) | 1 (2) | 7 (2) | | Region | Asia | 6 (12) | 25 (14) | 21 (17) | 7 (14) | 59 (15) | | | Europe | 43 (83) | 127 (71) | 92 (74) | 41 (79) | 303 (74) | | | North America | 1 (2) | 14 (8) | 9 (7) | 2 (4) | 26 (6) | | Other | | 2 (4) | 12 (7) | 3 (2) | 2 (4) | 19 (5) | | Mean ALT, U/L (SD) | | 122 (83) | 100 (69) | 99 (73) | 82 (47) | 100 (70) | | Mean HDV RNA, log IU/mL (SD) | | 4.97 (1.12) | 4.94 (1.13) | 5.14 (1.17) | 4.88 (1.19) | 5.00 (1.15) | | HDV genotype, n (%) | 1 | 47 (90) | 174 (98) | 118 (94) | 52 (100) | 391 (96) | | | 4/5/8/not reported | 1 (2) / 0 / 0 / 4 (8) | 0 / 1 (0.6) / 0 / 3 (2) | 0/0/1(1)/6(5) | 0/0/0/0 | 16 (4) | | Median HBsAg, log IU/mL (range) | | 3.92 (2.18, 4.75) | 3.83 (2.11, 4.75) | 3.91 (1.16, 4.75) | 3.92 (2.22, 4.63) | 4.00 (1.16, 4.75) | | Cirrhosis, n (%) | | 15 (29) | 47 (26) | 32 (26) | 14 (27) | 108 (27) | ## Primary Endpoint: Composite Response at Week 48 # **Key Secondary Endpoints: Virological and Biochemical Response at Week 48** # Key Secondary Endpoints: % Patients Achieving HDV RNA < LLOQ at Week 48 #### Mean HDV RNA and ALT Decline Through End of Treatment # **Key Secondary Endpoints: Histologic Response Rates at Week 48** **EVALUABLE PAIRED LIVER BIOPSIES (N=229)** | | % (n) | | | | | | |---|----------------------|--------------------------|----------------------|-----------------|--|--| | Response | LNF + RTV
n=107 | LNF + RTV + Alfa
n=66 | Alfa
n=26 | Placebo
n=30 | | | | Histologic Composite Endpoint* In Patients with Evaluable Paired Biopsies (n=229) | 33% (35)
(p=0.61) | 53% (35)
(p=0.0139) | 38% (10)
(p=0.46) | 27% (8) | | | ^{* ≥ 2-}point improvement in histology activity index (HAI) score + no worsening in Ishak fibrosis score #### Factors Associated with Composite Response at Week 48 ### **End of Study Results: Composite Endpoint** #### RANDOMIZED POPULATION, N=338 ^{*}PTWK24 responders may be different from responders at EOTWK48 #### **End of Study Results: Virological & Biochemical Components** **RANDOMIZED POPULATION, N=338** ^{*}PTWK24 responders may be different from responders at EOTWK48 #### Composite Endpoint Response through End of Follow-up #### PATIENTS WHO COMPLETED TREATMENT AND FOLLOWED THROUGH WEEK 72 (N=312) #### **Beneficial Post-treatment Flares** - WELL-TOLERATED, WITHOUT SIGNS OF DECOMPENSATION - TRANSIENT ALT ELEVATIONS ASSOCIATED WITH HDV RNA DECLINE #### Responder/Non-Responder Analysis - Virologic ## **Overall Safety through Week 48** #### BOTH LONAFARNIB-TREATMENT REGIMENS WERE WELL-TOLERATED | | N (%) | | | | | |---|-------------------|----------------------|-----------------------------|--------------------|------------------| | | Placebo
(n=52) | LNF + RTV
(n=178) | LNF + RTV + Alfa
(n=125) | Alfa
(n=50) | Total
(N=405) | | Discontinuations | 10 (19) | 34 (19) | 22 (18) | 11 (21) | 77 (19) | | Patients with ≥ 1 dose interruption/missed dose | 14 (27) | 76 (43) | 64 (51) | 27 (54) | 181 (45) | | Patients ≥ 1 TEAE | 37 (71) | 168 (94) | 120 (96) | 48 (96) | 373 (92) | | Patients with serious TEAE | 2 (4) | 15 (8) | 18 (14) | 5 (10) | 40 (10) | | Patients with ≥ 1 TEAE leading to death | 0 | 1 (1) ¹ | 1 (1) ¹ | 1 (2) ² | 3 (1) | ¹Deemed unrelated to treatment ²Deemed related to treatment #### **Dose Modifications** #### 33% OF PATIENTS DOSE REDUCED; ~50% SUBSEQUENTLY DOSE INCREASED | | N (%) | | | | | |--|-------------------|----------------------|-----------------------------|----------------|------------------| | | Placebo
(n=52) | LNF + RTV
(n=178) | LNF + RTV + Alfa
(n=125) | Alfa
(n=52) | Total
(N=407) | | Patients who dose reduced, n (%) | 0 | 46 (26) | 65 (52) | 22 (44) | 133 (33) | | Patients who subsequently dose increased, n (%) | 0 | 26 (57) | 35 (54) | 10 (46) | 71 (53) | | Patients with ≥ 1 dose interruption/missed dose, n (%) | 14 (27) | 76 (43) | 64 (51) | 27 (54) | 181 (45) | | Patients who subsequently restarted, n (%) | 11 (79) | 72 (95) | 57 (89) | 25 (93) | 165 (91) | | Reason for first dose interruption/missed dose | | | | | | | Adverse Event, n (%) | 2 (4) | 19 (11) | 34 (27) | 10 (20) | 65 (16) | | Other (drug availability, etc) , n (%) | 12 (23) | 57 (32) | 30 (24) | 17 (34) | 116 (29) | #### **Summary and Conclusions** - Both LNF arms achieved the composite primary endpoint vs placebo - Key secondary virological and biochemical endpoints were also met - Statistically significant improvement in histology in the combination arm - Further strengthens assessment of the potential utility/benefit of treatment - Could be predictive of improved long-term clinical outcomes - Both lonafarnib-treatment regimens were well-tolerated - Encouraging 24-week off-treatment response rate exceeds EOT response rates, suggests finite, oral-based therapy may be possible in a subset of patients with CHDV #### **Acknowledgments** - We wish to extend our gratitude to the patients who participated in the D-LIVR trial and their families, and to the dedicated D-LIVR investigators and their administrative teams - The study was funded by Eiger BioPharmaceuticals, Palo Alto, CA, USA - Data collection and analysis were provided by IQVIA NC, USA, and WCG Statistics Collaborative Inc. MD, USA, funded by Eiger BioPharmaceuticals