Subcutaneous exendin (9-39) effectively treats post-bariatric hypoglycemia

COLLEEN M. CRAIG, M.D. TRACEY L. MCLAUGHLIN, M.D., M.S.

Division of Endocrinology, Metabolism & Gerontology Stanford University School of Medicine **Presenter Disclosure**

Consultant: Eiger BioPharmaceuticals

Funding for this study was provided by:

- Stanford University TRAM program
- Stanford University SPARK program
- KL2 Mentored Career Development Award

Rates of obesity and bariatric surgery increasing

Source: American Society for Metabolic & Bariatric Surgery; Behavioral Risk Factor Surveillance System (BRFSS)

Annual US

Post Bariatric Hypoglycemia, a rare but disabling disease

Asymptomatic	Symptomatic req. assistance		
Asymptomatic Patients with Lab Values	Patient Reported Symptoms	Partial Labs w/ Symptoms	Full Labs w/ Symptoms or Hospitalization
30% Goldfine 2007	11.6% Lee 2015 0.1% Sarwar 2008	6.2% Nambron 2013	0.2% Marsk 2010 0.36% Kellogg 2008 0.46% Nambron 2013 6.6% Gribsholt 2016

Clinical Characteristics

Clinical Presentation

- 0.5-10 years post-GI surgery (RYGB)
- Postprandial hypoglycemia (1-3 hours)
- Symptoms of hypoglycemia
 - Autonomic
 - Neuroglycopenic
 - LOC or seizure
- Insulin inappropriately elevated (≥3uU/mI) at time of hypoglycemia

Therapeutic Approach

No pharmacotherapies approved

Dietary Changes:

- Frequent small meals/CHO restriction
 Stepped Pharmacotherapy:
- Acarbose →Octreotide→Diazoxide
- Limited by efficacy/tolerability

Surgical Approaches:

- Gastrostomy tube/gastric band
- Partial pancreatectomy/RYGB reversal

Diagnosis

Whipple's Triad:

- 1. Symptoms and signs of hypoglycemia
- 2. Measured low plasma glucose
- 3. Resolution of symptoms when plasma glucose is normalized

Other etiologies ruled out

Proposed Etiologies

- β-cell hyperplasia and/or ↓ apoptosis
- Enhanced β-cell sensitivity
- f insulin sensitivity / clearance
- Counter-regulatory failure
- Non-insulin mediated mechanisms
- Hypersecretion of incretin hormones

PHYSIOLOGY Early nutrient sensing by L cells \rightarrow Hypersecretion of GLP-1

Image adapted from Manning S. et al. Physiology 2015;30:50-62 GLP-1 concentrations elevated >10-fold post-RYGB and are up to 50-fold higher in patients with PBH

Hypothesis

Antagonism of the GLP-1 receptor will result in a reversal of postprandial glucose lowering via inhibition of GLP-1 induced insulin secretion

- Enhances secretion of insulin
- Inhibits secretion of glucagon
- Delays gastric emptying
- GLP-1 analogue (Gila monster)
- 53% homology to human GLP-1
- Agonist
- Synthetic Exendin4 = Exenatide
- 31 AA fragment of Exenatide
- Specific competitive antagonist Stanford University

RESULTS

Phase 1 cross-over placebo-controlled trial: IV Exendin (9-39)

Inclusion Criteria:

- 1) Whipple's triad
- 2) Hyperinsulinemia (>3uU/mL)

Endpoints:

- 1°: Prevention of hypoglycemia (≤50mg/dL)
- 2°: Improvement in symptom score
- (Edinburgh Hypoglycemia Symptom Scale)

RESULTS IV infusion placebo– All patients became hypoglycemic

RESULTS IV infusion Exendin (9-39)– 100% reversal of hypoglyemia

RESULTS IV Exendin (9-39) – Improved symptoms of hypoglycemia

Edinburgh Hypoglycemia Symptom Scale

METHODS Phase 1 SAD: SC injection Exendin (9-39) – All doses therapeutic

- 1°: Prevention of hypoglycemia (≤50mg/dL)
- 2°: Improvement in hypoglycemia symptom score
- Pharmacokinetic profile
- Safety & Tolerability

RESULTS Baseline OGTT–All patients became hypoglycemic

RESULTS SC Exendin (9-39)–Hypoglycemia prevented at all dose levels

RESULTS SC Exendin (9-39) significantly improved late glycemic responses

	Baseline	SC Ex(9-39)	P-value
Early Glycemic Responses	(n=8)	(n=8)	
Fasting plasma glucose (mg*dl-1)	91.6 ± 2	94.5 ± 2	0.125
Peak postprandial glucose (mg*dl-1)	229.3 ± 13.2	252.3 ± 24	0.258
Time to peak glucose (min)	54.5 ± 4	52.5 ± 5	0.351
AUC glucose (0,60)(mg*dl-1*min-1)	10171 ± 335	11135 ± 704	0.140
Late Glycemic Responses			
Nadir glucose (mg*dl-1)	47.7 ± 2	77.9 ± 4	< 0.001
Time to nadir (min)	135.5 ± 5	180.0	<0.000
AUC glucose(0,180)(mg*dl-1*min-1)	21106 ± 1002	27471 ± 1963	0.007

RESULTS SC Exendin (9-39) reduced symptoms of hypoglycemia

Edinburgh Hypoglycemia Symptom Scoring

Summary

- PBH is a rare, disabling disease for which no pharmacotherapy exists
- GLP-1 appears to play a critical role in the underlying pathophysiology
- Subcutaneous administration of a single dose of Exendin (9-39) at doses ranging from 10-30 mg safely, tolerably and effectively prevented hypoglycemia and improved symptoms in 8/8 subjects during an OGTT
- SC Exendin (9-39) represents a promising, targeted therapeutic

Future Directions

- Phase 2a Multi-Ascending Dose trial currently underway at Stanford
 - BID SC Ex-9 x 3 days (ClinicalTrials.gov: NCT02771574)

Acknowledgements

McLaughlin Lab

- Tracey McLaughlin
- Li-fen Liu
- Candice Allister
- Elizabeth Colbert
- Thi Nguyen
- Cindy Lamendola
- Dalia Perlman
- Kathryn Weaver

University of Copenhagen

- Carolyn Deacon
- Jens Holst

Stanford TRAM Pilot program

- Dean Felsher
- Joanna Lilienthal

Stanford SPARK program

- Daria Mochly-Rosen
- Kevin Grimes

KL2 Mentored Career Development Award

- NIH KL2 TR 001083
- NIH UL1 TR 001085